
NETCAP: A framework for secure and
concurrent network traffic analysis

!2

$ whoami

Student from the LMU Munich

Interests:

- Network Security Monitoring & Anomaly Detection
- Machine Learning
- Programming (Golang, C / C++ / ObjC, Swift, Haskell, Python, Rust)
- Hardware & Software Security
- Reverse Engineering
- Penetration Testing

!3

Why network security monitoring?

Network environments have many vulnerable components

Hackers will always find a way in - “low hanging fruit”

Be prepared for the worst case!

!4

Why anomaly detection?

Number of signatures is exploding (Kaspersky: 330 000 new samples per day)

New threats cannot be detected by signatures

Existing malware can be obfuscated to be fully undetectable again

!5

Problems?

–Vern Paxson, 1998

“The monitor will be attacked.”

!6

A major problem for data collection

memory safety
All existing frameworks are written in C or C++

Parsing network protocols is complex.

Mistakes happen a lot.

!7

MITRE CVE results for Snort IDS

!8

MITRE CVE results for Bro IDS

!9

More Bro

!10

!Problem?

!11

To the rescue!

NETCAP
Traffic Analysis Framework

!12

How does it work?

Uses gopacket library for decoding packets in pure Go

Generates audit records as compressed protocol buffers

Concurrent design: worker pool, each audit record written to a separate file

-> enables consuming applications to implement a concurrent design as well

!13

Why Protocol Buffers?

Type safe structured data - can represent complex nested structures

Goal: Data Accessibility. Generated Data is available in almost any programming language

Huge landscape of frameworks for machine learning, in many interesting languages
(R, Scala, Haskell…)

see: https://github.com/josephmisiti/awesome-machine-learning

!14

What audit records are generated?

+ TLS (Client Hello Msg + Ja3)
+ LinkFlow
+ NetworkFlow
+ TransportFlow
+ HTTP
+ Flow (unidirectional)
+ Connection (bidirectional)

+ NTP
+ SIP
+ IGMP
+ LLC
+ IPv6HopByHop
+ SCTP
+ SNAP
+ LinkLayerDiscovery
+ ICMPv6NeighborAdvertisement
+ ICMPv6RouterAdvertisement
+ EthernetCTP
+ EthernetCTPReply
+ LinkLayerDiscoveryInfo

+ TCP
+ UDP
+ IPv4
+ IPv6
+ DHCPv4
+ DHCPv6
+ ICMPv4
+ ICMPv6
+ ICMPv6Echo
+ ICMPv6NeighborSolicitation
+ ICMPv6RouterSolicitation
+ DNS
+ ARP
+ Ethernet
+ Dot1Q
+ Dot11

!15

Tell me more.

WORKER 1

WORKER 2

WORKER 3

NETCAP in a nutshell

PCAP

LIVE FROM
INTERFACE

WORKER 4

COLLECTOR

ETHERNET.PROTO

IP.PROTO

UDP.PROTO

TCP.PROTO

… … …

Packet Data
Collection

Asynchronous
Protocol
Decoding

Serialization
to Protocol Buffers

Data
Compression

Data
Buffering

Writing Data
To Disk

Packet
Sources

PCAP-NG

GZIP

GZIP

GZIP

GZIP

…

4096 bytes

4096 bytes

4096 bytes

4096 bytes

…

Ethernet.ncap.gz

IPV4.ncap.gz

UDP.ncap.gz

TCP.ncap.gz

!16

Ethernet.ncap.gz

IPv4.ncap.gz

UDP.ncap.gz

NETCAP filtering & csv export

TCP.ncap.gz

Timestamp,SrcMAC,DstMAC,EthernetType,
PayloadEntropy,PayloadSize

Timestamp,Version,IHL,TOS,Length,Id,Flags,FragOffset,
TTL,Protocol,Checksum,SrcIP,DstIP,Padding,Options,

PayloadEntropy,PayloadSize

Timestamp,SrcPort,DstPort,Length,Checksum,
PayloadEntropy,PayloadSize,…

Timestamp,SrcPort,DstPort,SeqNum,AckNum,
DataOffset,FIN,SYN,RST,PSH,ACK,URG,ECE,CWR,NS,

Window,…

… … …

Netcap
Audit Records

Field
Selection Export

Ethernet.csv

IPv4.csv

UDP.csv

TCP.csv

Input File

$ netcap -r TCP.ncap.gz -select Timestamp,SrcPort,DstPort,SeqNum,Window,ACK,SYN,RST > TCP.csv

Output File

!17

Creation of labeled datasets
for supervised machine learning

suricata traffic.pcap fast.log

netlabel

NETCAP labeling

scans generates

parsed alerts will be mapped
onto the collected data

concurrently for each audit record type

parses

netcap traffic.pcap

TCP.ncap.gz

reads

generates

UDP.ncap.gz

Flow.ncap.gz

Connection.ncap.gz

Phase 1:

Phase 2:

TCP_labeled.csv

UDP_labeled.csv

Flow_labeled.csv

Connection_labeled.csv

reads

generates

Data generation
with netcap

Label extraction
with suricata

final data in CSV format
with mapped alerts for each record

Phase 3:
Mapping alerts

with netcap

reads

reads

reads

…

!18

NETCAP Sensors

Sensors
Exporting Data

via batched UDP datagrams

Central Collection
Server

NETCAP
COLLECTOR

DEVICE #5

DEVICE #3

DEVICE #2

DEVICE #1

DEVICE #6

DEVICE #4

DEVICE #6

DEVICE #6

Batch of Audit Data

Client ID
Device Type

Audit Record Type
Audit Data

Cup Special

Distributed monitoring,
Traffic is encrypted in transit

!19

Cup Special Data encryption

NETCAP
COLLECTOR

NETCAP
SENSOR

PUB.KEY PRIV.KEY

PUB.KEY PRIV.KEY

Step 1: Sensor and Collector server generate keypair

Step 2: Server Public key is distributed to sensors

Step 3: Sensors use the servers public key to send encrypted messages.
Each message has the sensors public key prepended,

to allow the server to authenticate and decrypt the message

1

1

2 3

!20

Why monitor IoT devices?

A majority is compromised by brute force attacks - easy to detect with monitoring

Embedded applications are written in low level languages (C / C++) and may contain exploitable bugs

Many devices are infrequently updated and are vulnerable for a long period of time

!21

State of IoT 2018?

!22

Wait… Node.js on IoT devices?

!23

Sounds like a bad idea.

!24

The good news: Go is gaining popularity for IoT applications

!25

What about embedded systems?
Go depends on features of the operating system.
However, there is work in progress on bringing it to embedded devices as well.
Also the go authors are aware of this - maybe Go 2 will change the game?

!26

Whats your business model?

GPLv3 :)

!27

Further open source contributions

!28

Further open source contributions

!29

Other use cases?

Monitor honeypots

Monitor medical devices

Forensic Analysis

Research! :)

!30

Core benefits of netcap?

Memory Safety (pure Golang codebase)

Data Accessibility (Protocol Buffers)

Performance (all 40+ encoders, ~1GB/min processing time)

Documentation (2k lines of comments on 8k lines of Go code)

130+ pages thesis with in depth technical documentation and usage

!31

PoC || GTFO

Up-to-date, well documented dataset
~50GB pcap dumps

!32

PoC || GTFO Thesis excerpt: Evaluation of extracted and labeled data with netcap
using Tensorflow and a Deep Neural Network

!33

Thesis? Coming soon!

!34

Conclusion

Use memory safe programming languages for the development of critical software infrastructure

This allows us to focus on the creation of solid logic, rather than solid memory management.

Golang || Rust

Thank you!  
Questions?

philipp.mieden@protonmail.ch

github.com/dreadl0ck
twitter.com/dreadcode

mailto:philipp.mieden@protonmail.ch
http://github.com/dreadl0ck
http://twitter.com/dreadcode

