
Philipp Mieden, 2018

Implementation and evaluation
of secure and scalable anomaly-based

network intrusion detection

Datum: 12.12.2018

Aufgabensteller: Prof. Dr. Helmut Reiser

Betreuer: Dipl. Inf. Stefan Metzger

Bachelor Thesis Presentation

!2

Why network security monitoring?

Network environments have many vulnerable components

Hackers will always find a way in - “low hanging fruit” paradigm

Prepare for worst case - assist Incident Response and Forensics

!3

Why network anomaly detection?

Number of signatures is exploding (Kaspersky: 330 000 unique new samples per day)

New threats cannot be detected by signatures

Existing malware can be obfuscated to be fully undetectable again

!4

Problems?

–Vern Paxson, 1998

“The monitor will be attacked.”

!5

What about

memory safety
All existing frameworks are written in C or C++

Parsing network protocols is complex.

Mistakes happen a lot.

The network monitor could be disabled or compromised.

!6

MITRE CVE results for Snort IDS

!7

MITRE CVE results for Bro IDS

!8

Bro issues not tracked in MITRE database

!9

!Problem?

!10

To the rescue!

NETCAP
Traffic Analysis Framework

!11

How does it work?

gopacket library for decoding packets

audit record generation as compressed protocol buffers

concurrent design: worker pool, each audit record written to a separate file

language for implementation: Golang (garbage collected runtime)

!12

Why protocol buffers?

Type safe structured data - can represent complex nested structures

Goal: data accessibility -> generated data is available in almost any programming language

Huge landscape of frameworks for machine learning, in many interesting languages
(R, Scala, Haskell…)

see: https://github.com/josephmisiti/awesome-machine-learning

!13

What audit records are generated?

+ TLS (Client Hello Msg + Ja3)
+ LinkFlow
+ NetworkFlow
+ TransportFlow
+ HTTP
+ Flow (unidirectional)
+ Connection (bidirectional)

+ NTP
+ SIP
+ IGMP
+ LLC
+ IPv6HopByHop
+ SCTP
+ SNAP
+ LinkLayerDiscovery
+ ICMPv6NeighborAdvertisement
+ ICMPv6RouterAdvertisement
+ EthernetCTP
+ EthernetCTPReply
+ LinkLayerDiscoveryInfo

+ TCP
+ UDP
+ IPv4
+ IPv6
+ DHCPv4
+ DHCPv6
+ ICMPv4
+ ICMPv6
+ ICMPv6Echo
+ ICMPv6NeighborSolicitation
+ ICMPv6RouterSolicitation
+ DNS
+ ARP
+ Ethernet
+ Dot1Q
+ Dot11

!14

Internals

WORKER 1

WORKER 2

WORKER 3

NETCAP in a nutshell

PCAP

LIVE FROM
INTERFACE

WORKER 4

COLLECTOR

ETHERNET.PROTO

IP.PROTO

UDP.PROTO

TCP.PROTO

… … …

Packet Data
Collection

Asynchronous
Protocol
Decoding

Serialization
to Protocol Buffers

Data
Compression

Data
Buffering

Writing Data
To Disk

Packet
Sources

PCAP-NG

GZIP

GZIP

GZIP

GZIP

…

4096 bytes

4096 bytes

4096 bytes

4096 bytes

…

Ethernet.ncap.gz

IPV4.ncap.gz

UDP.ncap.gz

TCP.ncap.gz

!15

Ethernet.ncap.gz

IPv4.ncap.gz

UDP.ncap.gz

NETCAP filtering & csv export

TCP.ncap.gz

Timestamp,SrcMAC,DstMAC,EthernetType,
PayloadEntropy,PayloadSize

Timestamp,Version,IHL,TOS,Length,Id,Flags,FragOffset,
TTL,Protocol,Checksum,SrcIP,DstIP,Padding,Options,

PayloadEntropy,PayloadSize

Timestamp,SrcPort,DstPort,Length,Checksum,
PayloadEntropy,PayloadSize,…

Timestamp,SrcPort,DstPort,SeqNum,AckNum,
DataOffset,FIN,SYN,RST,PSH,ACK,URG,ECE,CWR,NS,

Window,…

… … …

Netcap
Audit Records

Field
Selection Export

Ethernet.csv

IPv4.csv

UDP.csv

TCP.csv

Input File

$ netcap -r TCP.ncap.gz -select Timestamp,SrcPort,DstPort,SeqNum,Window,ACK,SYN,RST > TCP.csv

Output File

Field Selection

!16

Labeling

suricata traffic.pcap fast.log

netlabel

NETCAP labeling

scans generates

parsed alerts will be mapped
onto the collected data

concurrently for each audit record type

parses

netcap traffic.pcap

TCP.ncap.gz

reads

generates

UDP.ncap.gz

Flow.ncap.gz

Connection.ncap.gz

Phase 1:

Phase 2:

TCP_labeled.csv

UDP_labeled.csv

Flow_labeled.csv

Connection_labeled.csv

reads

generates

Data generation
with netcap

Label extraction
with suricata

final data in CSV format
with mapped alerts for each record

Phase 3:
Mapping alerts

with netcap

reads

reads

reads

…

!17

Distributed Collection NETCAP Sensors

Sensors
Exporting Data

via batched UDP datagrams

Central Collection
Server

NETCAP
COLLECTOR

DEVICE #5

DEVICE #3

DEVICE #2

DEVICE #1

DEVICE #6

DEVICE #4

DEVICE #6

DEVICE #6

Batch of Audit Data

Client ID
Device Type

Audit Record Type
Audit Data

!18

Further use cases?

Monitor honeypots

Monitor medical devices

Forensic Analysis

Research! :) - GPLv3 license

!19

Open source contributions during development

!20

Open source contributions during development

!21

PoC || GTFO

Up to date

Well documented

~50GB original PCAPs

Tuesday: Brute Force

Wednesday: DoS

Thursday: Web Attacks

Friday: Botnet Traffic

Monday: Normal Traffic

Classification of malicious behavior with Tensorflow and a Deep Neural Network

Dataset:

!22

Experiment 1
Numeric values: zscore
Strings: dummy variables
Booleans: numeric (0 or 1)
Labels: attack class

!23

Experiment 2
Numeric values: standard score
Strings: index
Booleans: numeric (0 or 1)
Labels: attack class

!24

Experiment 3
Numeric values: standard score
Strings: index
Booleans: numeric (0 or 1)
Labels: attack description
Dropped lines with NaNs

!25

Experiment 4
Numeric values: zscore
Strings: index
Booleans: numeric (0 or 1)
Labels: attack description
Dropped SrcIP, DstIP fields

!26

Experiment 5
Numeric values: zscore
Strings: index
Booleans: numeric (0 or 1)
Labels: attack class
Ignored labels of class “Generic Protocol Command Decode”

!27

Experiment 6
Numeric values: standard score
Strings: index
Booleans: numeric (0 or 1)
Labels: attack description
Collecting Labels + Ignoring “GPCD” errors

!28

Experiments takeaways

Encoding strategies are vital for performance

High detection accuracy can be achieved with only a handful of extracted features

Different approaches to labeling can be used to increase value for analysts

High accuracy for protocol specific approach

!29

Conclusion

Use memory-safe programming languages for the development of critical software infrastructure

Developers need to focus on creating solid logic, rather than solid memory management.

Golang || Rust

Contact: philipp.mieden@protonmail.ch | twitter.com/dreadcode | github.com/dreadl0ck

mailto:philipp.mieden@protonmail.ch
http://twitter.com/dreadcode

